Let T be the parallelogram ABDC and S be the parallelogram EFGH.
In parallelogram ABHF:
Area of Δ FEH
=× Area of parallelogram ABHF …..(1)
In parallelogram CDHF:
Area of ΔFGH
=× Area of parallelogram CDHF …..(2)
Adding (1) and (2), we get:
Area of Δ FEH + Area of Δ FGH
=× (Area of parallelogram ABHF + Area of parallelogram CDHF)
⇒ Area of parallelogram EFGH
=× Area of parallelogram ABCD
⇒ Area of parallelogram S
=× Area of parallelogram T.
Thus, statement (1) is correct
In ΔACD :
FG=×ADSimilarly,
EH=×AD∴ FG + EH = AD ...(3)
In ΔABC :
FE=×BCSimilarly,
GH=×BC∴ FE + GH = BC ...(4)
Adding (3) and (4), we get:
FG + EH + FE + GH = AD + BC
Thus, statement (2) is wrong.