Consider
AB = 10,AC = 15,BC = 18
∴ BD = 9 and A'C '= 14,A'B' = 9,B'C' = 6
∴ B'D'
From Apollonius' theorem:
AB2+AC2=2(AD2+BD2)⇒102+152=2(AD2+92)⇒AD2=−81==81.5⇒AD=√81.5⇒A′B′2+A′C′2=2(A′D′2+B′D′2)
⇒92+142=2(A′D′2+32)⇒A′D′2==9==129.5⇒A′D′=√129.5 ∴ AD < A'D'
Hence, statement 1 is incorrect
Remember: In a triangle, three times the sum of the squares of the sides is equal to four times the sum of the squares of the medians.
∴3(AB2+BC2+CA2)=4(AD2+BE2+CF2)⇒=.....(1)
Also,
3(A′B′2+B′C′2+C′A′2)=4(A′D′2+B′E′2+C′F′2)⇒A′B′2+B′C′2+C′A′2 |
A′D′2+B′E′2+C′F′2 |
=....(2)
From (1) and (2), we have:
=A′B′2+B′C′2+C′A′2 |
A′D′2+B′E′2+C′F′2 |
Hence statement 2 is correct