Let ABC is equilateral triangle where, A = (0, 2) B = (0, 4) and C = (x, y) AB = BC = AC (sides of equilateral triangle) AB=√(0)+(4−2)2=2units (Using distance formula) BC=√(x−0)2+(y−4)2=√(x)2+(y−4)2 units AC=√(x−0)2+(y−2)2=√(x)2+(y−2)2 units Now, BC = AC (sides of equilateral triangle) √(x)2+(y−4)2=√(x)2+(y−2)2 ⇒(x)2+(y−4)2=(x)2+(y−2)2 (Squaring both sides) ⇒(y−4)2=(y−2)2 ⇒y2−8y+16=y2−4y+4 ⇒4y=12 ⇒y=3 And AB=AC √(x)2+(y−2)2=2 ⇒x2+(y−2)2=4 (Squaring both sides) ⇒x2+(3−2)2=4 ⇒x2=4−1=3⇒x=√3 ∴C=(√3,3) Hence, option (2) is correct.