Given: secθ,tanθ are the roots of the equation ax2+bx+c=0 Now, Sum of roots =secθ+tanθ=−b∕a Product of roots =secθ×tanθ=c∕a As we know that, sec2θ−tan2θ=1 ⇒(secθ+tanθ)(secθ−tanθ)=1 ⇒(−b∕a)×(secθ−tanθ)=1 ∴secθ−tanθ=−a∕b Now, (secθ−tanθ)secθtanθ=−