We have to calculate the maximum value of 16sinθ−12sin2θ Let f(θ)=16sinθ−12sin2θ Differentiating, both sides, we get ⇒f′(θ)=16cosθ−12×2×sinθ×cosθ=16cosθ−24×sinθ×cosθ For maxima and minima, f′(θ)=0 ⇒16cosθ−24×sinθ×cosθ=0 ⇒8cosθ(2−3sinθ)=0 ⇒8cosθ=0 and (2−3sinθ)=0 ∴θ=90° and sinθ=2∕3 or θ=sin−1(2∕3) Now we have to find second derivative, ⇒f"(θ)=−16sinθ−24[cos2θ−sin2θ] ⇒f"(θ)=−16sinθ−24[1−sin2θ−sin2θ]=−16sinθ−24[1−2sin2θ] When θ=.90°⇒f(θ)|θ=90°=−16sin90°−24[1−2sin290°]=−16+24=8>0 So, function gives minimum value at θ=90° When θ=sin−1(2∕3)⇒f"(θ)|θ=sin−1(23)=−16sinsin−1(2∕3)−24[1−2sin2sin−1(2∕3)] ⇒f"(θ)=−16(2∕3)−24[1−2(2∕3)2]=−(32∕3)−(24∕9)<0 So, function gives maximum value at θ=sin−1(2∕3) or sinθ=2∕3 ⇒f(θ)max=16(2∕3)−12(2∕3)2=(32∕3)−(16∕3)=16∕3