Given: sin A sin (60° - A) sin (60° + A) = k sin 3A As we know that, sin (A + B) = sin A cos B + sin B cos A and sin (A - B) = sin A cos B – sin B cos A L.H.S: sin A sin (60° - A) sin (60° + A) = sin A (sin 60° cos A – sin A cos 60°) (sin 60° cos A + sin A cos 60°) ⇒ sin A sin (60° - A) sin (60° + A) = sin A (3/ 4 – sin2A) ⇒sinA[
3
4
−sin2A]=ksin3A ⇒
3sinA−4sin3A
4
=ksin3A ⇒3sinA−4sin3A=4ksin3A As we know that, sin3A=3sinA−4sin3A ⇒ sin 3A = 4k sin 3A ⇒ k = 1/4