Let the 19 numbers be a1,a2,a3,......,a19 Given that
a1+a2+a3+......+a19
19
=75 ⇒a1+a2+a3+.....+a19=19×75=1425 .......(1) Also given that
a1+a2+a3+.......+a10
10
=65 ⇒a1+a2+a3+.......+a10=10×65=650 ........(2) And
a10+a11+a12+......+a19
10
=84 ⇒a10+a11+a12+.......+a19=10×84=840 .........(3) Adding equations (2) and (3) and subtracting equation (1) from it, we get: a10=650+840−1425=65 Now, if a10 is excluded, the new sum will be: left(a1+a2+a3+.........+a19)−a10=1425−65=1360 ... from equation (1) And the average of these 18 numbers will become 1360/18 = 75.5.