dx ⇒IF=e4lnx ⇒IF=x4 Now, y×(IF)=∫Q( IF )dx ⇒y×x4=∫4
lnx
x5
lnx
x5
×x4dx ⇒yx4=∫4
lnx
x
lnx
x
dx Integrating, ⇒yx4=2(lnx)2+c (where c is integration constant) Given y(1)=1 ⇒(1)(1)4=2(ln1)2+c ⇒c=1 ∴yx4=2(lnx)2+1 For y(e) y(e)4=2(lne)2+1 ⇒y(e4)=3 ⇒y=