© examsnet.com
Question : 23
Total: 29
Using properties of determinants, prove the following:
|
| = (α - β) (β - γ) (γ - α) (α + β + γ)
Solution:
Δ = |
|
ApplyingR 3 → R 3 + R 1
Δ =|
|
= α + β + γ|
|
ApplyingC 1 → C 1 − C 2 and C 2 → C 2 − C 3
Δ = α + β + γ|
|
= α + β + γ (α - β) (β - γ)|
|
= α+ β + γ (α - β) (β - γ) [1 (β + γ) - 1 (α + β)]
= (α - β) (β - γ) (α + β + γ) (+ γ - α - β)
= (α - β) (β - γ) (γ - α) (α + β + γ)
Hence proved.
Applying
Δ =
= α + β + γ
Applying
Δ = α + β + γ
= α + β + γ (α - β) (β - γ)
= α+ β + γ (α - β) (β - γ) [1 (β + γ) - 1 (α + β)]
= (α - β) (β - γ) (α + β + γ) (+ γ - α - β)
= (α - β) (β - γ) (γ - α) (α + β + γ)
Hence proved.
© examsnet.com
Go to Question: