CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 24
Total: 29
Show that the rectangle of maximum area that can be inscribed in a circle is a square.
OR
Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is
1
3
h.
Solution:  
Let a rectangle ABCD be inscribed in a circle with radius r.

In ∠DBC = θ
In right ΔBCD ;
BC
BD
= cos θ
⇒ BC = BD cos θ = 2r cos θ
CD
BD
= sin θ
⇒ CD = BF sin θ = 2r sin θ
Let A be the area of rectangle ABCD.
∴ A = BC × CD
⇒ A = 2r cos θ 2r sin θ = 4r2 sin θ cos θ
⇒ A = 2r2 sin 2θ , sin 2θ = 2 sin θ cos θ
∴
dA
dθ
= 2 . 2r2 cos 2θ = 4r2 cos 2θ
Now ,
dA
dθ
= 0
⇒ 4r2 cos 2θ = 0 ⇒ cos 2θ = 0
⇒ cos 2θ = cos
Ï€
2
⇒ θ =
Ï€
4

d2A
dθ2
= - 2 . 4r2 sin 2θ = - 8r2 sin 2θ
∴ (
d2A
dθ2
)
(θ=
Ï€
4
)
= −8r2sin(2,
Ï€
4
)
= - 8r2 . 1 = −8r2 < 0
Therefore, by the second derivative test, θ =
Ï€
4
is the point of local maxima of A.
So, the area of rectangle ABCD is the maximum at θ =
Ï€
4

Now, θ =
Ï€
4

⇒
CD
BC
= tan
Ï€
4

⇒
CD
BC
= 1 ⇒ CD = BC
⇒ Rec tangle ABCD is a square
Hence, the rectangle of the maximum area that can be inscribed in a circle is a square.
OR
Let a cylinder be inscribed in a cone of radius R and height h.
Let the radius of the cylinder be r and its height be h1 .

It can be easily seen that Δ AGI and Δ ABD are similar.
∴
AI
AD
=
GI
BD

⇒
h−h1
h
=
r
R

⇒ r =
R
h
(h - h1)
Volume (V) of the cylinder = πr2h1
⇒ V = π
R2
h2
h
−h12h1

⇒ V = π
R2
h2
h2
+h12
−2hh1h1

⇒
dV
dh1
=
Ï€
R2
h2
[h2+h12−2hh1+h1(2h1−2h)]

⇒
dV
dh1
= π
R2
h2
h2
+3h12
−4hh1

Now,
dV
dh1
= 0
⇒
Ï€R2
h2
h2
+3h12
−4hh1
= 0
⇒ 3h12−4hh1+h2 = 0
⇒ 3h12−3hh1−hh1+h2 = 0
⇒ 3h1h1−h−hh1−h = 0
⇒ (h1−h)(3h_1-h) = 0
⇒ h1 = h , h1 =
h
3

It can be noted that if h1 = h, then the cylinder cannot be inscribed in the cone.
∴ h1 =
h
3

Now,
d2V
dh12
=
Ï€R2
h2
(0 + 6h1 - 4h) =
Ï€R2
h2
(6h1−4h)

∴
d2V
dh12(h1=
h
3
)
=
Ï€R2
h2
[
6h
3
−4h
]
=
−2πR2
h
< 0
Therefore, by the second derivative test, h1 =
h
3
is the point of local maxima of V.
So, the volume of the cylinder is the maximum when h1 =
h
3

Hence, the height of the cylinder of the maximum volume that can be inscribed in a cone of height h is
1
3
h
© examsnet.com
Go to Question: