CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 16
Total: 29
Prove that tan1(
cosx
1+sinx
)
=
π
4
π
2
, x ∊ (
π
2
,
π
2
)

OR
Prove that sin1(
8
17
)
+ sin1(
3
5
)
= cos1(
36
85
)

Solution:  
tan1(
cosx
1+sinx
)

= tan1 [
sin(
π
2
x
)
1+cos(
π
2
x
)
]

=
tan1 [
2sin(
π
4
x
2
)
c
o
s
(
π
4
x
2
)
2cos2(
π
4
x
2
)
]
[Since sin θ = 2 sin (θ/2) cos (θ/2) and 1 + cos θ = 2 cos2 (θ/2)]
tan1 [tan(
π
4
x
2
)
]
= (
π
4
x
2
)
(proved)
OR
Let sin1
8
17
= x
Then , sin x =
8
17
; cos x = 1x2
⇒ cos x = 1(
8
17
)
2

⇒ cos x = 1(
8
17
)
2

⇒ cos x =
225
289

⇒ cos x =
15
17

∴ tan x =
sinx
cosx

⇒ tan x =
8
17
15
17

⇒ tan x =
8
15

⇒ x = tan1(
8
15
)
... (1)
Let sin1
3
5
= y ... (2)
Then, sin y =
3
5
; cos y = 1y2
⇒ cos y = 1(
3
5
)
2

⇒ cos y =
16
25

⇒ cos y =
4
5

∴ tan y =
siny
cosy

⇒ tan y =
3
5
4
5

⇒ tan y =
3
4

⇒ y = tan1(
3
4
)
... (3)
From equations (2) and (3), we have,
sin1(
3
5
)
= tan1(
3
4
)

Now consider sin1(
8
17
)
+ sin1(
3
5
)

From equations (1) and (3), we have, sin1(
8
17
)
+ sin1(
3
5
)
= tan1(
5
15
)
+tan1(
3
4
)

= tan1(
8
15
+
3
4
1
8
15
×
3
4
)
[Since tan1x+tan1y = tan1
x+y
xy
]
= tan1(
32+45
6024
)

sin1(
8
17
)
+ sin1(
3
5
)
= tan1(
77
36
)
... (4)
Now, we have:
Let tan1(
77
36
)
= z
Then tan z =
77
36

⇒ sec z = 1+(
77
36
)
2
[Since sec θ = 1+tan2θ]
⇒ sec z =
1296+5929
1296

⇒ sec z =
7225
1296

⇒ sec z =
85
36

We know that cosz =
1
secz

Thus, sec z =
85
36
, cos z =
36
85

⇒ z = cos1(
36
85
)

tan1(
77
36
)
= cos1(
36
85
)

sin1(
8
17
)
+ sin1(
3
5
)
= cos1(
36
85
)
[Since from equation (4)]
Hence proved.
© examsnet.com
Go to Question: