CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 19
Total: 29
Using properties of determinants prove the following:
|
111
abc
a3b3c3
|
= (a - b) (b - c) (c - a) (a + b + c)
Solution:  
Δ = |
111
abc
a3b3c3
|

Applying C1 → C1−C3 and C2 → C2−C3, we have:
Δ = |
1−11−11
a−cb−cc
a3−c3b3−c3c3
|

=
|
001
a−cb−cc
(a−c)(a2+ac+c2)(b−c)(c2+bc+c2)c3
|

= (c - a) (b - c)
|
001
−11c
−a2+ac+c2b2+bc+c2c3
|

Applying C1 → C1+C2, we have:
Δ = (c - a) (b - c)
|
001
01c
b2−a2+bc−acb2+bc+c2c3
|

= (b - c) (c - a) (a - b)
|
001
01c
−a+b+cb2+bc+c2c3
|

= (a - b) (b - c) (c - a) (a + b + c)
|
001
01c
−1b2+bc+c2c3
|

Expanding along C1, we have:
Δ = (a - b) (b - c) (c - a) (a + b + c) - 1 |
01
1c
|

= (a - b) (b - c) (c - a) (a + b + c)
Hence proved.
© examsnet.com
Go to Question: