CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 18
Total: 29
Evaluate: ∫ sin x sin 2x sin 3x dx
OR
Evaluate: ∫
2
(1x)(1+x2)
dx
Solution:  
It is known that, si A sin B =
1
2
cos A - B - cos A + B
∴ ∫ sin x sin 2x sin 3x dx = ∫ |sin x ×
1
2
cos 2x - 3x - cos 2x + 3x|
=
1
2
∫ sin x cos (-x) - sin x cos 5x dx
=
1
2
∫ sin x cos x - sin x cos 5x dx
=
1
2
sin2x
2
dx -
1
2
∫ sin x cos 5x
=
1
4
|
cos2x
2
|
-
1
2
1
2
sin x + 5x + sin x - 5x dx
=
cos2x
8
-
1
4
∫ (sin 6x + sin (-4x) dx
=
cos2x
8
-
1
4
|
cos6x
6
+
cos4x
4
|
+ C
=
cos2x
8
-
1
8
|
cos6x
3
+
cos4x
2
|
+ C
=
6cos2x
48
-
1
8
|
2cos6x+3cos4x
6
|
+ C
=
1
48
[2 cos 6x - 3 cos 4x - 6 cos 2x] + C
OR
Let
2
(1x)(1+x2)
=
A
1x
+
Bx+C
1+x2

2 = A (1+x2) + Bx + X (1 - x)
2 = A + Ax2 + Bx - Bx2 + C - Cx
Equating the coefficient of x2, x, and constant term, we obtain
A − B = 0
B − C = 0
A + C = 2
On solving these equations, we obtain
A = 1, B = 1, and C = 1
2
(1x)(1+x2)
=
1
1x
+
x+1
1+x2

⇒ ∫
2
(1x)(1+x2)
dx = ∫
1
1x
dx + ∫
x
1+x2
dx + ∫
1
1+x2
dx
= - ∫
1
x1
dx +
1
2
2x
1+x2
dx + ∫
1
1+x2
dx
= - log |x - 1| +
1
2
log |1+x2| + tan1 x + C
© examsnet.com
Go to Question: