© examsnet.com
Question : 18
Total: 29
Evaluate: ∫ sin x sin 2x sin 3x dx
OR
Evaluate: ∫
dx
OR
Evaluate: ∫
Solution:
It is known that, si A sin B =
cos A - B - cos A + B
∴ ∫ sin x sin 2x sin 3x dx = ∫ |sin x ×
cos 2x - 3x - cos 2x + 3x|
=
∫ sin x cos (-x) - sin x cos 5x dx
=
∫ sin x cos x - sin x cos 5x dx
=
∫
dx -
∫ sin x cos 5x
=
|
| -
∫
sin x + 5x + sin x - 5x dx
=
-
∫ (sin 6x + sin (-4x) dx
=
-
|
+
| + C
=
-
|
+
| + C
=
-
|
| + C
=
[2 cos 6x - 3 cos 4x - 6 cos 2x] + C
OR
Let
=
+
2 = A( 1 + x 2 ) + Bx + X (1 - x)
2 = A +A x 2 + Bx - B x 2 + C - Cx
Equating the coefficient ofx 2 , x, and constant term, we obtain
A − B = 0
B − C = 0
A + C = 2
On solving these equations, we obtain
A = 1, B = 1, and C = 1
∴
=
+
⇒ ∫
dx = ∫
dx + ∫
dx + ∫
dx
= - ∫
dx +
∫
dx + ∫
dx
= - log |x - 1| +
log | 1 + x 2 | + t a n − 1 x + C
∴ ∫ sin x sin 2x sin 3x dx = ∫ |sin x ×
=
=
=
=
=
=
=
=
=
OR
Let
2 = A
2 = A +
Equating the coefficient of
A − B = 0
B − C = 0
A + C = 2
On solving these equations, we obtain
A = 1, B = 1, and C = 1
∴
⇒ ∫
= - ∫
= - log |x - 1| +
© examsnet.com
Go to Question: