© examsnet.com
Question : 11
Total: 29
Show that the function f in A = R - {
} defined as f(x) =
is one-one and onto.
Hence find
Hence find
Solution:
f(x) =
Let f( x 1 ) = f ( x 2 )
⇒
=
⇒ 24x 1 x 2 - 16 x 1 + 18 x 2 - 12 = 24 x 1 x 2 + 18 x 1 - 16 x 2 - 12
⇒ 18x 2 + 16 x 2 = 18 x 1 + 16 x 1
⇒ 34x 2 = 34 x 1
Since,
is a real number, therefore, for every y in the co-domain of f, there exists a number x in R - {
} such that f(x) = y =
Therefore, f(x) is onto.
Hence,f − 1 exists.
Now, let y =
⇒ 6xy - 4y = 4x + 3
⇒ 6xy - 4xx = 4y + 3
⇒ x (6y - 4) = 4y+ 3
⇒ x =
⇒ y =
int exchanging the variables x and y
⇒f − 1 (x) =
[put y = f − 1 x]
Let f
⇒
⇒ 24
⇒ 18
⇒ 34
Since,
Therefore, f(x) is onto.
Hence,
Now, let y =
⇒ 6xy - 4y = 4x + 3
⇒ 6xy - 4xx = 4y + 3
⇒ x (6y - 4) = 4y+ 3
⇒ x =
⇒ y =
⇒
© examsnet.com
Go to Question: