© examsnet.com
Question : 12
Total: 29
Find the value of the following:
tan
| s i n − 1
+ c o s − 1
| , |x| < 1, y > 0 and xy < 1
OR
Prove thatt a n − 1 (
) + t a n − 1 (
) + t a n − 1 (
) =
tan
OR
Prove that
Solution:
We know that:
s i n − 1
= 2 t a n − 1 x for |x| ≤ 1 .. (1)
c o s − 1
= 2 t a n − 1 y for y = 0 ... (2)
∴s i n − 1
+ c o s − 1
= 2 t a n − 1 x + 2 t a n − 1 y
⇒ tan
| s i n − 1
+ c o s − 1
|
= tan
(2 t a n − 1 x + 2 t a n − 1 y)
= tan( t a n − 1 x + t a n − 1 y )
= tan( t a n − 1
)
[Sincet a n − 1 x + t a n − 1 y = t a n − 1
, for xy < 1]
=
OR
We know that:
t a n − 1 x + t a n − 1 y = t a n − 1
, for xy < 1
We have:
t a n − 1 (
) + t a n − 1 (
) + t a n − 1 (
)
=| t a n − 1 (
) + t a n − 1 (
) | + t a n − 1 (
)
=t a n − 1 (
) + t a n − 1 (
) (Since
×
<1)
=t a n − 1 (
) + t a n − 1 (
)
=t a n − 1
=t a n − 1
(Since
×
< 1)
=t a n − 1
= t a n − 1 1 =
Hence,t a n − 1 (
) + t a n − 1 (
) + t a n − 1 (
) =
∴
⇒ tan
= tan
= tan
= tan
[Since
=
OR
We know that:
We have:
=
=
=
=
=
=
Hence,
© examsnet.com
Go to Question: