CBSE Class 12 Math 2013 Solved Paper

© examsnet.com
Question : 12
Total: 29
Find the value of the following:
tan
1
2
|sin1
2x
1+x2
+cos1
1y2
1+y2
|
, |x| < 1, y > 0 and xy < 1
OR
Prove that tan1(
1
2
)
+ tan1(
1
5
)
+ tan1(
1
8
)
=
π
4
Solution:  
We know that:
sin1
2x
1+x2
= 2 tan1 x for |x| ≤ 1 .. (1)
cos1
1y2
1+y2
= 2 tan1 y for y = 0 ... (2)
sin1
2x
1+x2
+ cos1
1y2
1+y2
= 2tan1 x + 2 tan1 y
⇒ tan
1
2
|sin1
2x
1+x2
+cos1
1y2
1+y2
|

= tan
1
2
(2 tan1 x + 2 tan1 y)
= tan (tan1x+tan1y)
= tan (tan1
x+y
1xy
)

[Since tan1x+tan1y = tan1
x+y
1xy
, for xy < 1]
=
x+y
1xy

OR
We know that:
tan1x+tan1y = tan1
x+y
1xy
, for xy < 1
We have:
tan1(
1
2
)
+ tan1(
1
5
)
+ tan1(
1
8
)

= |tan1(
1
2
)
+ tan1(
1
5
)
|
+ tan1(
1
8
)

= tan1(
1
2
+
1
5
1
1
2
×
1
5
)
+ tan1(
1
8
)
(Since
1
2
×
1
5
<1)
= tan1(
7
9
)
+tan1(
1
8
)

= tan1
7
9
+
1
8
1
7
9
×
1
8

= tan1
56+9
727
(Since
7
9
×
1
8
< 1)
= tan1
65
65
= tan1 1 =
π
4

Hence, tan1(
1
2
)
+ tan1(
1
5
)
+ tan1(
1
8
)
=
π
4
© examsnet.com
Go to Question: