CBSE Class 12 Math 2018 Solved Paper

© examsnet.com
Question : 14
Total: 29
If (x2+y2)2 = xy, find
dy
dx

OR
If x = a (2θ - sin 2θ) and y = a (1 - cos 2θ) , find
dy
dx
when θ =
π
3

Solution:  
(x2+y2)2 = xy
differentiating w.r.t. x
⇒ 2 (x2+y2) (2x+2y
dy
dx
)
= y + x
dy
dx

4x3+4x2yy
dy
dx
+ 4y2x + 4y3
dy
dx
- y - x
dy
dx
= 0
(4x2y+4y3x)
dy
dx
+ 4x3+4y2x - y = 0
(4x2y+4y3x)
dy
dx
= - 4x34y2x + y
dy
dx
=
4x34y2x+y
4x2y+4y3x

OR
x = a (2θ - sin 2θ)
y = a (1 - cos θ)
differentiating w.r.t. θ
dx
dθ
= a (2 - cos 2θ × 2)
dy
dθ
= a (+ sin 2θ × 2)
dy
dx
=
(+sin2θ×2)
(2cos2θ×2)
=
(sin2θ)
(1cos2θ)

dy
dx
=
2sinθ×cosθ
2sin2θ

dy
dx
=
cosθ
sinθ
= cot θ
at , θ =
π
3

dy
dx
= cot
π
3
=
1
3
© examsnet.com
Go to Question: