© examsnet.com
Question : 15
Total: 29
if y = sin (sin x), prove that
+ tan x
+ y c o s 2 x = 0
Solution:
y = sin (sin x)
= cos (sin x) . cos x
= cos (sin x) - . (- sin x) + cos x . (- si (sin x). cos x)
= - sin x . cos (sin x) - y c o s 2 x
now,
+ tan x
+ y c o s 2 x
= - sin x . cos (sin x) - yc o s 2 x + tan x . cos (sin x) . cos x + y c o s 2 x
= - sin x . cos (sin x) - yc o s 2 x +
. cos (sin x) . cos x + y c o s 2 x
= 0
now,
= - sin x . cos (sin x) - y
= - sin x . cos (sin x) - y
= 0
© examsnet.com
Go to Question: