© examsnet.com
Question : 16
Total: 29
Find the equations of the tangent and the normal, to the curve 16 x 2 + 9 y 2 = 145 at the point ( x 1 , y 1 ) , where x 1 = 2 and y 1 > 0.
OR
Find the intervals in which the function f(x) =
− x 3 − 5 x 2 + 24x + 12 is
(a) strictly increasing, (b) strictly decreasing.
OR
Find the intervals in which the function f(x) =
(a) strictly increasing, (b) strictly decreasing.
Solution:
The given equation of the curve is,
16 x 2 + 9 y 2 = 145 ... (i)
Let( x 1 , y 1 ) lies on the curve
⇒16 x 1 2 + 9 y 1 2 = 145
⇒ 16 ×2 2 + 9 y 1 2 = 145 (Since x 1 = 2)
⇒9 y 1 2 = 145 - 64
⇒9 y 1 2 = 81
⇒y 1 2 = 9
⇒y 1 = 3 ... (y 1 > 0)
Coordinates of the given point are (2 , 3)
16 x 2 + 9 y 2 = 145
Differentiating with respect to x
⇒ 32x + 18y
= 0
⇒
=
⇒(
) ( 2 , 3 ) =
Equation of tangent at (2 , 3)
y - 3 =
(x - 2)
⇒ 32x + 27y - 145 = 0
Equation of normal at (2, 3)
y - 3 =
(x - 2)
⇒ 27x - 32y + 42 = 0
OR
Given that f (x) =
− x 3 − 5 x 2 + 24x + 12
a) Strictly increasing
f (x) =
− x 3 − 5 x 2 + 24x + 12
⇒ f' (x) =x 3 − 3 x 2 - 10x + 24
Function is increasing when f ' (x) > 0
⇒x 3 − 3 x 2 - 10x + 24 > 0
⇒ (x - 4) (x + 3) (x - 2) > 0
⇒ x = - 3 , 2 , 4
x ∊ (- 3 , 2) ∪ (4 , ∞)
b) Strictly decreasing
f' (x) = 0
⇒x 3 − 3 x 2 - 10x + 24 = 0
⇒ (x - 4) (x + 3) (x - 2) < 0
⇒ x ∊ (- ∞ , - 3) ∪ (2 , 4)
Let
⇒
⇒ 16 ×
⇒
⇒
⇒
⇒
Coordinates of the given point are (2 , 3)
Differentiating with respect to x
⇒ 32x + 18y
⇒
⇒
Equation of tangent at (2 , 3)
y - 3 =
⇒ 32x + 27y - 145 = 0
Equation of normal at (2, 3)
y - 3 =
⇒ 27x - 32y + 42 = 0
OR
Given that f (x) =
a) Strictly increasing
f (x) =
⇒ f' (x) =
Function is increasing when f ' (x) > 0
⇒
⇒ (x - 4) (x + 3) (x - 2) > 0
⇒ x = - 3 , 2 , 4
x ∊ (- 3 , 2) ∪ (4 , ∞)
b) Strictly decreasing
f' (x) = 0
⇒
⇒ (x - 4) (x + 3) (x - 2) < 0
⇒ x ∊ (- ∞ , - 3) ∪ (2 , 4)
© examsnet.com
Go to Question: