© examsnet.com
Question : 18
Total: 29
Find :
∫
dx
∫
Solution:
Put sinx = t
so, cosxdx = dt
∫
using partial fraction
=
+
solving we get A = 1,B = 1,C = 1
∫
= ∫ [
+
] dt
= ∫
dt + ∫
dt + ∫
dt
= - log (1 - t) +
log ( 1 + t 2 ) + t a n − 1 t + c
Re substituting ,
= log(
) + t a n − 1 (sin x) + c
so, cosxdx = dt
∫
using partial fraction
solving we get A = 1,B = 1,C = 1
∫
= ∫
= - log (1 - t) +
Re substituting ,
= log
© examsnet.com
Go to Question: