CBSE Class 12 Math 2020 Outside Delhi Set 1 Solved Paper

© examsnet.com
Question : 21
Total: 36
Section - B

Q. Nos. 21 to 26 carry 2 marks each.
Check if the relation R on the set A={1,2,3,4,5,6} defined as R={(x,y):y is divisible by x} is (i) symmetric (ii) transitive
OR
Prove that:
‌
9Ï€
8
−‌
9
4
s
i
n
‌−1(‌
1
3
)
=‌
9
4
s
i
n
‌−1(‌
2√2
3
)
Given,
A={1,2,3,4,5,6}
R={(x,y):y‌ is divisible by ‌x}
(i) (2,4)∈R    {∵4 is divisible by 2 }
But (4,2)∉ R {∵2 is not divisible by 4}
∴‌‌R is not symmetric.
 

(ii) Let (a,b)∈R&(b,c)∈R
⇒‌‌b=λa and c=µb
Now, c=µb=µ(λa)⇒(a,c)∈R
⇒‌‌c is divisible by a
∴‌‌R is transitive.
 
OR
‌ L.H.S. ‌=‌
9Ï€
8
−‌
9
4
s
i
n
‌−1
‌
1
3

=‌
9
4
(‌
Ï€
2
−sin‌−1‌
1
3
)

=‌
9
4
(cos−1‌
1
3
)
.
.
.
.
.(1)

Now, let cos−1‌
1
3
=x
.
Then, cos‌x=‌
1
3
⇒sin‌x
=√1−(‌
1
3
)
2
=‌
2√2
3

∴x=sin‌−1‌
2√2
3
⇒cos−1‌
1
3
=sin‌−1‌
2√2
3

∴‌ L.H.S. ‌=‌
9
4
s
i
n
‌−1
‌
2√2
3
=‌ R.H.S. ‌
© examsnet.com
Go to Question: