CBSE Class 12 Math 2022 Term I Solved Paper

© examsnet.com
Question : 40
Total: 50
The absolute maximum value of the function f(x)= 4x−‌
1
2
x2
in the interval [−2,‌
9
2
]
is
‌ Given, ‌‌‌f(x)=4x−‌
1
2
x2

∴‌‌f′(x)=4−‌
1
2
(2x)
=4−x

‌ put ‌‌‌f′(x)=0
⇒‌‌4−x=0
⇒‌‌x=4
Then, we evaluate the f at critical point x=4 and at the end points of the interval [−2,‌
9
2
]
.
f(4)‌=16−‌
1
2
(16)
=16−8
=8

f(−2)‌=−8−‌
1
2
(4)

‌=−8−2=−10
f(‌
9
2
)
‌
=4(‌
9
2
)
−‌
1
2
(‌
9
2
)
2

‌=18−‌
81
8
=7.875

Thus, the absolute maximum value of f on [−2,‌
9
2
]
is 8 occurring at x=4.
© examsnet.com
Go to Question: