NCERT Class XI Mathematics - Sequences and Series - Solutions

© examsnet.com
Question : 85
Total: 106
If f is a function satisfying f (x + y) = f (x) f (y) for all x, y ∈ N such that f (1) = 3 and
n
Σ
x=1
f
(x)
= 120, find the value of n.
Solution:  
We are given
f (x + y) = f (x) f (y) ∀ x, y ∈ N ....(i)
f (1) = 3 ,
n
Σ
x=1
f (x) = 120
∴ f (2) = f (1 + 1) = f (1) f (1) = 3·3 = 32 [By using (i)]
f (3) = f (2 + 1) = f (2)· f (1) = 32 · 3 = 33
Proceeding like above, we get f (n) = 3n
We have
n
Σ
x=1
f (x) = 120
⇒ f (1) + f (2) + ...... + f (n) = 120 ⇒ 3 + 32 + ...... + 3n = 120
3(3n1)
31
= 120 ⇒ 3(3n1) = 120 × 2
3n1 = 80 ⇒ 3n = 81 ⇒ 3n = (3)4
∴ n = 4
© examsnet.com
Go to Question: