NCERT Class XI Mathematics - Straight Lines - Solutions

© examsnet.com
Question : 58
Total: 74
Find perpendicular distance from the origin of the line joining the points (cosθ, sinθ) and (cosϕ, sinϕ).
Solution:  
Let the points be A (cosθ, sinθ) and B(cosϕ, sinϕ)
Equation of the line AB is
y - sin θ =
sinϕsinθ
cosϕcosϕ
(x - cos θ)
⇒ y - sin θ =
2cos(
θ+ϕ
2
)
s
i
n
(
ϕθ
2
)
2sin(
ϕ+θ
2
)
s
i
n
(
ϕθ
2
)
(xcosθ)

⇒ (y - sin θ) =
cos(
θ+ϕ
2
)
sin(
θ+ϕ
2
)
(xcosθ)

⇒ y sin (
θ+ϕ
2
)
- sin θ sin (
θ+ϕ
2
)
= - x cos (
θ+ϕ
2
)
+ cos θ . cos (
θ+ϕ
2
)

=
=xcos(
θ+ϕ
2
)
+ y sin (
θ+ϕ
2
)
- [cosθcos(
θ+ϕ
2
)
+sinθ.sin(
θ+ϕ
2
)
]
=0

⇒ x cos (
θ+ϕ
2
)
+ y sin (
θ+ϕ
2
)
- cos (θ(
θϕ
2
)
)
= 0
[By using cos A·cosB + sinA·sinB = cos (A – B)]
⇒ x cos (
θ+ϕ
2
)
+ y sin (
θ+ϕ
2
)
- cos (
θϕ
2
)
= 0
Now distance of the above line from the origin
=
|0+0cos(
θϕ
2
)
|
cos2(
θ+ϕ
2
)
+sin2(
θ+ϕ
2
)
= |cos(
θϕ
2
)
|
.
© examsnet.com
Go to Question: