NCERT Class XI Mathematics - Straight Lines - Solutions
© examsnet.com
Question : 58
Total: 74
Find perpendicular distance from the origin of the line joining the points (cosθ, sinθ) and (cosϕ, sinϕ).
Solution:
Let the points be A (cosθ, sinθ) and B(cosϕ, sinϕ)
Equation of the line AB is
y - sin θ =
(x - cos θ)
⇒ y - sin θ =
( x − c o s θ )
⇒ (y - sin θ) =−
( x − c o s θ )
⇒ y sin(
) - sin θ sin (
) = - x cos (
) + cos θ . cos (
)
== x c o s (
) + y sin (
) - [ c o s θ c o s (
) + s i n θ . s i n (
) ] = 0
⇒ x cos(
) + y sin (
) - cos ( θ − (
) ) = 0
[By using cos A·cosB + sinA·sinB = cos (A – B)]
⇒ x cos(
) + y sin (
) - cos (
) = 0
Now distance of the above line from the origin
=
= | c o s (
) | .
Equation of the line AB is
y - sin θ =
⇒ y - sin θ =
⇒ (y - sin θ) =
⇒ y sin
=
⇒ x cos
[By using cos A·cosB + sinA·sinB = cos (A – B)]
⇒ x cos
Now distance of the above line from the origin
© examsnet.com
Go to Question: