NCERT Class XI Mathematics - Straight Lines - Solutions

© examsnet.com
Question : 76
Total: 74
Prove that the product of the lengths of the perpendiculars drawn from the points (a2b2,0) and (a2b2,0) to the line
x
a
cos θ +
y
b
sin θ = 1 is b2
Solution:  
The given equation of line is
x
a
cos θ +
y
b
sin θ = 1 ... (i)
Now distance of (i) from the point (a2b2,0)
=
|
a2b2
a
c
o
s
θ
1
|
(
cosθ
a
)
2
+(
sinθ
b
)
2

And distance of (i) from the point (a2b2,0)
=
|
a2b2
a
c
o
s
θ
1
|
(
cosθ
a
)
2
+(
sinθ
b
)
2

Now, product of lengths of these two perpendiculars
=
|(
a2b2
a
c
o
s
θ
1
)
(
a2b2
a
c
o
s
θ
1
)
|
cos2θ
a2
+
sin2θ
b2

=
|(
a2b2
a2
)
c
o
s2
θ
1
|
b2cos2θ+a2cos2θ
a2b2
=
|(a2cos2θb2cos2θ)a2|×a2b2
(b2cos2θ+a2sin2θ)a2

=
|a2(cos2θ1)b2cos2θ|×b2
a2sin2θ+b2cos2θ
=
|a2sin2θb2cos2θ|b2
a2sin2θ+b2cos2θ

= |
(a2sin2θ+b2cos2θ)
(a2sin2θ+b2cos2θ)
|
b2
= |1|b2 = b2
Hence proved.
© examsnet.com
Go to Question: