NCERT Class XI Mathematics - Trigonometric Functions - Solutions
© examsnet.com
Question : 48
Total: 61
cos 3x + cos x – cos 2x = 0
Solution:
We have, cos 3x + cos x – cos 2x = 0
⇒ 2 cos(
) cos (
) - cos 2x = 0
⇒ 2cos 2x cosx – cos 2x = 0 ⇒ cos 2x (2 cosx – 1) = 0
Either cos 2x = 0 or, 2 cosx – 1 = 0
Now, if cos 2x = 0
⇒ 2x = (2x + 1)
,n ∊ Z
⇒ x = (2n + 1)
, n ∊ Z
[Since cos x = 0 , then x = (2n + 1)
, n ∊ Z]
If, 2 cosx – 1 = 0 ⇒ 2 cosx = 1 ⇒ cosx = 1/2
⇒ cos x = cos
⇒ x = 2nπ ±
, n ∊ Z
Since if cos x = cos α , then x = 2nπ ±
, n ∊ Z
Here x = (2n + 1)
or 2nπ ±
, n ∊ Z
⇒ 2 cos
⇒ 2cos 2x cosx – cos 2x = 0 ⇒ cos 2x (2 cosx – 1) = 0
Either cos 2x = 0 or, 2 cosx – 1 = 0
Now, if cos 2x = 0
⇒ 2x = (2x + 1)
⇒ x = (2n + 1)
[Since cos x = 0 , then x = (2n + 1)
If, 2 cosx – 1 = 0 ⇒ 2 cosx = 1 ⇒ cosx = 1/2
⇒ cos x = cos
Since if cos x = cos α , then x = 2nπ ±
Here x = (2n + 1)
© examsnet.com
Go to Question: