NCERT Class XI Mathematics - Trigonometric Functions - Solutions
© examsnet.com
Question : 49
Total: 61
sin 2 x + cos x = 0
Solution:
We have, sin 2x + cos x = 0
⇒ 2 sinx cosx + cosx = 0 ⇒ cosx (2 sinx + 1) = 0
⇒ cosx = 0 or, 2 sinx + 1= 0
Now if cosx = 0⇒ x = (2n + 1)
, n ∊ Z
And if 2 sinx + 1 = 0 ⇒ 2 sinx = – 1 ⇒ sinx =−
A value of x satisfying sinx =
is
We have, sinx =−
Thus, sin x = sin( π +
) ⇒ sin x = sin
⇒ x = nπ +( − 1 ) n
, n ∊ Z
Hence x = (2n + 1)
or nπ + ( − 1 ) n
, n ∊ Z
⇒ 2 sinx cosx + cosx = 0 ⇒ cosx (2 sinx + 1) = 0
⇒ cosx = 0 or, 2 sinx + 1= 0
Now if cosx = 0⇒ x = (2n + 1)
And if 2 sinx + 1 = 0 ⇒ 2 sinx = – 1 ⇒ sinx =
A value of x satisfying sinx =
We have, sinx =
Thus, sin x = sin
⇒ x = nπ +
Hence x = (2n + 1)
© examsnet.com
Go to Question: