NCERT Class XI Mathematics - Trigonometric Functions - Solutions

© examsnet.com
Question : 50
Total: 61
sec2 2x = 1 – tan 2x
Solution:  
We have, sec2 2x = 1 – tan 2x
⇒ 1 + tan2 2x = 1 – tan 2x ⇒ tan2 2x + tan 2x = 0
⇒ tan 2x (tan 2x + 1) = 0 ⇒ either tan 2x = 0 or, tan 2x + 1 = 0
Now, if tan 2x = 0 ⇒ 2x = nπ ⇒ x =
nπ
2
, n ∊ Z
Since if tan x = 0 , then x = nπ ; n ∊ Z
And, if tan 2x + 1 = 0 ⇒ tan 2x = – 1
A value of x satisfying tanx = 1 is
π
4

We have, tan2x = –1
Thus tan 2x = tan (π
π
4
)
⇒ tan 2x = tan (
3π
4
)

⇒ 2x = nπ +
3π
4
, n ∊ Z
Since if tan x = tan α , then x = nπ + α ,n ∊ Z
⇒ x =
nπ
2
+
3π
8
, n ∊ Z
Hence x =
nπ
2
or
nπ
2
+
3π
8
, n ∊ Z
© examsnet.com
Go to Question: