NCERT Class XI Mathematics - Trigonometric Functions - Solutions

© examsnet.com
Question : 51
Total: 61
sin x + sin 3x + sin 5x = 0
Solution:  
We have, sinx + sin3x + sin5x = 0
⇒ (sin 5x + sinx) + sin 3x = 0.
⇒ 2 sin (
5x+x
2
)
cos (
5x−x
2
)
+ sin 3x = 0
⇒ 2sin 3x cos 2x + sin 3x = 0 ⇒ sin 3x (2 cos 2x + 1) = 0
⇒ either sin 3x = 0 or, 2 cos 2x + 1 = 0
Now , if sin 3x = 0 ⇒ 3x = nπ, n ∈ Z
⇒ x =
nπ
3
, n ∊ Z
And if 2 cos 2x + 1 = 0 ⇒ cos2x = −
1
2

A value of x, satisfying cosx =
1
2
is
Ï€
3

Thus, cos 2x = cos (π−
Ï€
3
)
= - cos
Ï€
3
= −
1
2

⇒ cos 2x = cos
2Ï€
3
⇒ 2x = 2nπ ±
2Ï€
3
, n ∊ Z
Since if cos x = cos α then , x - 2nπ ± α , n ∊ Z
⇒ x = nπ ±
Ï€
3
, n ∊ Z
Hence x =
nπ
3
or nπ ±
Ï€
3
, n ∊ Z
© examsnet.com
Go to Question: