2 ( a − 1 ) > 0 (iii) 0 " class="fm-inline"> 2 a + 1 > 0 Case I D = ( − 2 ( a − 1 ) ) 2 − 4 ( 2 a + 1 ) ≥ 0 4 ( a 2 − 2 a + 1 ) − 4 ( 2 a + 1 ) ≥ 0 a 2 − 4 a ≥ 0 a ( a − 4 ) ≥ 0 a ∈ ( − ∞ , 0 ] ∪ [ 4 , ∞ ) .........(i) Case II 0" class="fm-inline"> 2 ( a − 1 ) > 0 1" class="fm-inline"> a > 1 a ∈ ( 1 , ∞ ) ........(ii) Case III 0" class="fm-inline"> 2 a + 1 > 0 {-1}/{2}" class="fm-inline"> a > − 1 2 .........(iii) From Eqs. (i), (ii) and (iii), we get, a ∈ [ 4 , ∞ )" >


AMU Engineering 2018 solved paper Solved Paper

© examsnet.com
Question : 117
Total: 150
Go to Question: