Then 6x2−10xy−3xy+5y2‌‌=0 2x(3x−5y)−y(3x−5y)‌‌=0 (2x−y)(3x−5y)‌‌=0 Let the orthocenter be (h,k) so, Slope of OP× slope of AB=−1 ‌
k
h
×−1‌‌=−1 h‌‌=k‌‌‌‌‌⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(I) Now, Slope of OB× slope of AD=−1 2×(‌