Given, equation of parabola is y2=4x ⇒‌4a‌‌=4 ⇒‌a‌‌=1 and point P=(1,4) ∴ Equation of tangent is y=mx+‌
a
m
4=m(l)+‌
1
m
⇒‌‌m2−4m+1=0 ∴‌‌m1+m2=4 m1m2=1 ∴‌‌(m1−m2)2=(m1+m2)2−4m1m2 =16−4−(1) (m1−m2)2=12 (m1−m2)=√12=2√3 Let θ be the angle between tangents.