=i ⇒3x+3y−ix+iy−6=i[9−(−1)] ‌⇒‌‌3x+3y−ix+iy−6=10i ‌⇒‌‌3(x+y)+i(−x+y)=6+10i On comparing both the sides, we get 3(x+y)=6 and −x+y=10 ⇒x+y=2.....(i) and −x+y=10.....(ii) On solving Eqs. (i) and (ii); we get 2y=12⇒y=6‌ and ‌x=−4