Point of intersection of lines L1 and L2 is center C of the circle. Solving L1 and L2 : ∵x+y=6⇒x=6−y Then, x+2y=4 ⇒6−y+2y=4 ⇒y=−2and x=8 Thus, C≡(8,−2). CP is the radius. CP=√(8−6)2+(2+2)2=4√4+16=√20 Equation of circle (x−8)2+(y+2)2=(√20)2 ⇒x2+y2−16x+4y+48=0