Given, equation of circle is x2+y2=a2⋅⋅⋅⋅⋅⋅⋅(i) Also P and Q are end points of diameter. Let P≡(acosθ,asinθ) Q≡(−acosθ,−asinθ) According to the question, s=
|acosθ+asinθ−1|
√2
=
|a(cosθ+sinθ)−1|
√2
and t=
|−a(cosθ+sinθ)−1|
√2
=1 Now, st =
|1−a2(cosθ+sinθ)2|
2
=
|1−a2(1+sin2θ)|
2
So, ( st ) will be maximum, if ( 1+sin2θ ) minimum, ∵(sin2θ)min=−1( i.e. sin2θ≥−1) ⇒1+sin2θ≥0∴(1+sin2θ)min=0 ∴(a2(1+sin2θ))min=0 and hence, st=
1
2
Also, (a2(1+sin2θ))max=2a2 ⇒st=
|1−2a2|
2
>
1
2
for a>
1
√2
So, (st)max occurs when a2(1+sin2θ)=2a2 ⇒1+sin2θ=2(∵a>