Case 1: When x2−3x−10=0 and x2−10≠0x2−3x−10=0 or, (x−5)(x+2)=0 or, x=5 or -2 Case 2:x2−10=1x2−11=0 No integer solutions Case 3:x2−10=−1 and x2−3x−10 is even x2−9=0 or, (x+3)(x−3)=0 or, x=−3 and 3 for x=−3 and +3x2−3x−10 is even In total 4 values of x satisfy the equations