|=0 Expanding along R1, we get ‌−x[6−(x2+5x+6)]−x(−3+x+3)=0 ‌⇒‌‌−x(−x2−5x)−x(x)=0 ‌⇒‌‌x(x2+5x−x)=0 ‌⇒‌‌x2(x+4)=0 ‌⇒‌‌x=0,−4 ‌ But it is given that, x∈[−4,−1]. ∴‌‌0∉[−4,−1] Hence, only one solution exist.