=cos−1a ‌⇒‌‌dy=cos−1‌ adx ‌ ‌ On integrating both sides, we get ∫dy‌=cos−1a‌∫dx+C ⇒‌‌y‌=cos−1ax+C . . . (i) When ‌‌x=0, then y=2 Then, from Eq. (i), we get 2=0+C⇒C=2 On putting the value of C in Eq. (i), we get y‌=xcos−1a+2 ⇒‌‌‌y−2‌=xcos−1a ⇒‌‌‌