Examsnet
Unconfined exams practice
Home
Exams
Banking Entrance Exams
CUET Exam Papers
Defence Exams
Engineering Exams
Finance Entrance Exams
GATE Exam Practice
Insurance Exams
International Exams
JEE Exams
LAW Entrance Exams
MBA Entrance Exams
MCA Entrance Exams
Medical Entrance Exams
Other Entrance Exams
Police Exams
Public Service Commission (PSC)
RRB Entrance Exams
SSC Exams
State Govt Exams
Subjectwise Practice
Teacher Exams
SET Exams(State Eligibility Test)
UPSC Entrance Exams
Aptitude
Algebra and Higher Mathematics
Arithmetic
Commercial Mathematics
Data Based Mathematics
Geometry and Mensuration
Number System and Numeracy
Problem Solving
Board Exams
Andhra
Bihar
CBSE
Gujarat
Haryana
ICSE
Jammu and Kashmir
Karnataka
Kerala
Madhya Pradesh
Maharashtra
Odisha
Tamil Nadu
Telangana
Uttar Pradesh
English
Competitive English
Certifications
Technical
Cloud Tech Certifications
Security Tech Certifications
Management
IT Infrastructure
More
About
Careers
Contact Us
Our Apps
Privacy
Test Index
JEE Advanced 2017 Paper 2
Show Para
Hide Para
Share question:
© examsnet.com
Question : 9
Total: 54
A point charge +Q is placed just outside an imaginary hemispherical surface of radius R as shown in the figure. Which of the following statements is/are correct?
The electric flux passing through the curved surface of the hemisphere is
−
Q
2
ε
0
(
1
−
1
√
2
)
The component of the electric field normal to the flat surface is constant over the surface
Total flux through the curved and the flat surfaces is
Q
0
ε
0
The circumference of the flat surface is an equipotental
Validate
Solution:
Since the charge lies outside the sphere, net flux passing through the sphere is zero.
ϕ
curved surface
+
ϕ
disc
=
0
Option (C) is incorrect
ϕ
curved surface
=
ϕ
disc
c
o
s
θ
=
R
√
R
2
+
r
2
E
=
1
4
π
ε
0
Q
(
R
2
+
r
2
)
ϕ
disc
=
∫
−
E
.
d
−
A
=
∫
(
1
4
π
ε
0
Q
(
R
2
+
r
2
)
×
2
π
r
d
r
×
c
o
s
θ
)
=
Q
.2
π
4
π
ε
0
∫
r
d
r
R
2
+
r
2
×
R
(
R
2
+
r
2
)
1
2
Q
R
2
ε
0
R
∫
0
r
d
r
(
R
2
+
r
2
)
3
2
=
Q
R
2
ε
0
[
1
2
(
R
2
+
r
2
)
−
1
2
−
1
2
]
0
R
=
Q
R
2
ε
0
[
1
R
−
1
√
R
2
+
R
2
]
=
Q
2
ε
0
[
1
−
1
√
2
]
⇒
ϕ
curved surface
=
−
Q
2
ε
0
Option (A) is correct Potential at any point on the circumference of the flat surface is
1
4
π
ε
0
Q
√
R
2
+
R
2
=
Q
4
π
ε
0
(
√
2
R
)
Hence it is equipotential
Option (D) is correct
E
=
1
4
π
ε
0
Q
(
R
/
c
o
s
θ
)
2
=
θ
4
π
ε
0
R
2
c
o
s
2
θ
E
normal
=
E
c
o
s
θ
=
Q
4
π
ε
0
R
2
c
o
s
3
θ
Which is not constant
Option (B) is in correct
© examsnet.com
Go to Question:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Prev Question
Next Question