g(t)dt+2x+3 (Using King Property) Differential both sides, we get ef(x)=g(x)+2⇒g(x)=ef(x)−2 ⇒g′(x)=ef(x)⋅f′(x) ∵ef(x) is always greater than zero. ∴ Sign of g′(x) is same as sign of f′(x) ∴ Sign of g′(x)
Clearly, local extremum (maximum or minimum) will occur at x=99,97,95,...,3,1 ∴ Sum of all the values =1+3+5+...+99=