Show Para
Letf ( x ) be a double differentiable function with continuous second derivative defined on the interval [0,1] satisfying the equation
√ 1 − ( f ′ ′ ( t ) ) 2 d t =
f ′ ( t ) d t ∀ x ∈ [ 0 , 1 ] and f ( 0 ) = f ′ ( 0 ) = 0 . Column-1; contains the information about interval of value of f ( x ) ; Column-2; contains information about value of f ( x ) ; Column-3: contains information about interval of value of definite integral of f ( x ) ; Match the following Column(s)
Answer questions Q. 47, Q. 48 and Q. 49 by appropriately matching the information given in the three columns of the following table.
Let
Column 1 | Column 2 | Column 3 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(I) | | (i) | | (P) | | |||||||||||||
(II) | | (ii) | | (Q) | | |||||||||||||
(III) | | (iii) | | (R) | | |||||||||||||
(IV) | | (iv) | | (S) | |
Go to Question: