‌f(x)=2x3−9ax2+12a2x+1,a>0 ‌f′(x)=6x2−18ax+12a2=0 ‌=6(x2−3ax+2a2) ‌=6(x−a)(x−2a)=0 ‌x=a,2a ‌∴‌‌x=a‌ is point of maxima ‌ ‌‌‌x=2a‌ is point of minima ‌ ‌∴‌‌p=a,q=2a ‌p2=q(‌ Given ‌) ‌a2=2a ‌⇒‌‌a=2 ‌‌‌f(x)=2x3−18x2+48x+1 ‌f(3)=37