α=max{82sin3x.44cos3x} =max{26sin3x.28cos3x} =max{26sin3x+8cos3x} and β=min{82sin3x.44cos3x}=min{26sin3x+8cos3x} Now range of 6sin3x+8cos3x =[−√62+82,+√62+82]=[−10,10] α=210&β=2−10 So, α1∕5=22=4 ⇒β1∕5=2−2=1∕4 quadratic 8x2+bx+c=0,c−b= 8×[ (product of roots ]+( sum of roots ) =8×[4×