The locus of the point of intersection of tangents to the parabola y2=4ax inclined at an angle α to each other is tan2α(x+a)2=y2−4ax Given equation of Parabola y2=4x{a=1} Point of intersection (-2,-1) tan2α(−2+1)2=(−1)2−4×1×(−2) ⇒tan2α=9 ⇒tanα=±3 ⇒|tanα|=3