(a) For R1 let a=1+√2,b=1−√2,c=81∕4 aR1b⇒a2+b2=(1+√2)2+(1−√2)2=6∈Q bR1c⇒b2+c2=(1−√2)2+(81∕4)2=3∈Q aR1c⇒a2+c2=(1+√2)2+(81∕4)2=3+4√2∉Q ∴R1 is not transitive. For R2 let a=1+√2,b=√2,c=1−√2 aR2b⇒a2+b2=(1+√2)2+(√2)2=5+2√2∉Q bR2c⇒b2+c2=(√2)2+(1−√2)2=5−2√2∉Q aR2c⇒a2+c2=(1+√2)2+(1−√2)2=6∈Q ∴R2 is not transitive.