] Given that, diagonal entries of A2 is 1 . i.e. a2+b2+b2+c2=1 or a2+2b2+c2=1 Case 1a=0 Then, 2b2+c2=1 (a) c=0 gives, b2=
1
2
or b=±
1
√2
∴a=0,b=1∕√2,c=0 (2 matrices) a=0,b=−1∕√2,c=0 (b) b=0, gives c2=1 or c=±1∴a=0,b=0,c=1 and a=0,b=0,c=−1 (2 matrices) Case 2b=0, then a2+c2=1 (a) a=0, then c=±1a=0,b=0,c=1 and a=0,b=0,c=−1 This is repeated case. (b) c=0, then a=±1a=1,b=0,c=0 and a=−1,b=0,c=0 Again 2 matrices.