xi=50 ‌⇒‌ Mean ‌=5 ‌‌ Variance ‌=‌
4
5
=‌
Σxi2
10
−(x)2 ‌‌
4
5
=‌
Σxi2
10
−25 ‌⇒∑xi2=258 Now,
10
∑
i=1
(xi−β)2=98 ‌
10
∑
i=1
xi2−2β‌
10
∑
i=1
xi+10β2=98 ‌⇒258−2β(50)+10β2=98 ‌⇒10β2−100β+160=0 ‌⇒β2−10β+16=0 ‌⇒β=8‌ as ‌β>2 Now, as per the question 2(x1−1)+4β,2(x2−1)+4β,...2(x10−1)+4β Can be simplified as 2x1+30,2x2+30,...,2x10+30 ‌µ=2(5)+30=40 ‌σ2=22(‌