Let z=x+iy v=x2+y2+(x−3)2+y2+x2+(y−6)2 =(3x2−6x+9)+(3y2−12y+36) =3(x2+y2−2x−4y+15) =3[(x−1)2+(y−2)2+10] v‌min ‌‌ at ‌z=1+2i=z0‌ and ‌v0=30 ‌ so ‌|2(1+2i)2−(1−2i)3+3|2+900 =∣2(−3+4i)−(1−8i3−6i(1−2i)+.3|2+900. =|−6+8i−(1+8i−6i−12)+3|2+900 =|8+6i|2+900