∵a and b are roots of equation x2+ax+b=0,a≠0,b≠0 ∴‌a2+a⋅a+b=0 ⇒‌2a2+b=0 ⇒‌b=−2a2 and b2+a⋅b+b=0 ∴4a4−2a3−2a2=0  [Using (i)] 2a2(2a2−a−1)=0 2a2=0 or 2a2−a−1=0 a=0 or 2a2−2a+a−1=0 ⇒‌a=0 or =(2a+1)(a−1)=0 ⇒a=0 or a=−‌
1
2
or a=1 ∴‌a=0⇒b=0 a=−‌
1
2
⇒b=‌
1
2
a=1⇒b=−2 Hence, required value of a and b are 1 and −2 respectively.