=q2−p ⇒‌‌α2−β2=√q2−p It is given that, (α1−β1)=2(α2−β2) ⇒2√p2−q=2√q2−p ⇒√p2−q=√q2−p ⇒‌‌p2−q=q2−p ⇒‌‌p2−q2+p−q=0 ⇒(p−q)(p+q)+(p−q)=0 ⇒‌‌(p−q)(p+q+1)=0 ⇒‌‌p−q=0 or p+q+1=0 but p−q≠0 as p≠q ∴p+q+1=0