Management Aptitude Test 2014 Paper

Show Para  Hide Para 
Passage II
The discoveries of the white dwarf, the neutron star, and the black hole, coming well after the discovery of the red giant are among the most exciting developments in decades because they may well present physicists with their greatest challenge since the failure of classical mechanics. In the life cycle of the star, after all of the hydrogen and helium fuel has been burned, the delicate balance between the outer nuclear radiation, pressure and the stable gravitational force becomes disturbed and slow contraction begins. As compression increases, a very dense plasma forms. If the initial star had mass of less than 1.4 solar masses (1.4 times the mass of our Sun), the process ceases at the density of 1000 tonnes per cubic inch, and the star becomes the white dwarf.
However, if the star was originally more massive, the white dwarf plasma can't resist the gravitational pressures, and in rapid collapse, all nuclei of the star are converted to a gas of free neutrons. Gravitational attraction compresses this neutron gas rapidly until a density of 10 tonnes per cubic inch is reached, at this point the strong nuclear force resists further contraction. If the mass of the star was between 1.4 and a few solar masses, the process stops here, and we have a neutron star. But if the original star was more massive than a few solar masses, even the strong nuclear forces cannot resist the gravitational crunch.
The neutrons are forced into one another to form heavier hadrons and these in turn coalesce to form heavier entities, of which we as yet know nothing. At this point, a complete collapse of the stellar m ass occurs. Existing theories predict a collapse to infinite density and infinitely small dimensions. Well before this, however, the surface gravitational force would become so strong that no signal could ever leave the star. Any photon emitted would fall back under gravitational attraction and the star would become black hole in space. This gravitational collapse poses a fundamental challenge to physics.
When the most widely accepted theories predict such improbable things as infinite density and infinitely small dimensions, it simply means that we are missing some vital insight. This last happened in physics in the 1930s, when we faced the fundamental paradox concerning atomic structure. At that time, it was recognised that electrons moved in stable orbits around nuclei in atoms.
However, it was also recognised that if charge is accelerated, as it must be to remain in orbit, it radiates energy; so, theoretically, the electron would be expected eventually to spiral into the nucleus and destroy the atom. Studies centred around this paradox led to the development of quantum mechanics. It may well be that an equivalent advance awaits us in investigating the theoretical problems presented by the phenomenon of gravitational collapse.
© examsnet.com
Question : 5
Total: 200
Go to Question: